GROUP BY Clause
GROUP BY Clause
1. Syntax Overview
GROUP BY expression (',' expression)*- The 
GROUP BYclause is used to group the result set of aSELECTstatement based on the specified column values. The values of the grouping columns remain unchanged in the results, while other columns with the same grouping column values are calculated using specified aggregate functions (e.g.,COUNT,AVG). 

2. Notes
2.1 Items in the SELECT Clause
Items in the SELECT clause must either include aggregate functions or consist of columns specified in the GROUP BY clause.
Valid Example:
SELECT concat(device_id, model_id), avg(temperature) 
  FROM table1 
  GROUP BY device_id, model_id; -- validResult:
+-----+-----+
|_col0|_col1|
+-----+-----+
| 100A| 90.0|
| 100C| 86.0|
| 100E| 90.0|
| 101B| 85.0|
| 101D| 85.0|
| 101F| 90.0|
+-----+-----+
Total line number = 6
It costs 0.094sInvalid Example 1:
SELECT device_id, temperature  
  FROM table1  
  GROUP BY device_id;-- invalidError Message:
Msg: org.apache.iotdb.jdbc.IoTDBSQLException: 701:
  'temperature' must be an aggregate expression or appear in GROUP BY clauseInvalid Example 2:
SELECT device_id, avg(temperature) 
  FROM table1  
  GROUP BY model; -- invalidError Message:
Msg: org.apache.iotdb.jdbc.IoTDBSQLException: 701:
  Column 'model' cannot be resolved2.2 Without a GROUP BY Clause
If there is no GROUP BY clause, all items in the SELECT clause must either include aggregate functions or exclude them entirely.
Valid Example:
SELECT COUNT(*), avg(temperature) 
  FROM table1; -- validResult:
+-----+-----------------+
|_col0|            _col1|
+-----+-----------------+
|   18|87.33333333333333|
+-----+-----------------+
Total line number = 1
It costs 0.094sInvalid Example:
SELECT humidity, avg(temperature) FROM table1;   -- invalidResult:
Msg: org.apache.iotdb.jdbc.IoTDBSQLException: 701: 
  'humidity' must be an aggregate expression or appear in GROUP BY clause2.3 Using Constant Integers in GROUP BY Clause
The GROUP BY clause supports referencing SELECT items using constant integers starting from 1. If the constant is less than 1 or exceeds the size of the SELECT item list, an error will occur.
Example:
SELECT date_bin(1h, time), device_id, avg(temperature)
  FROM table1
  WHERE time >= 2024-11-27 00:00:00  and time <= 2024-11-29 00:00:00
  GROUP BY 1, device_id;Result:
+-----------------------------+---------+-----+
|                        _col0|device_id|_col2|
+-----------------------------+---------+-----+
|2024-11-28T08:00:00.000+08:00|      100| 85.0|
|2024-11-28T09:00:00.000+08:00|      100| null|
|2024-11-28T10:00:00.000+08:00|      100| 85.0|
|2024-11-28T11:00:00.000+08:00|      100| 88.0|
|2024-11-27T16:00:00.000+08:00|      101| 85.0|
+-----------------------------+---------+-----+
Total line number = 5
It costs 0.092s2.4 Alias Restrictions in GROUP BY Clause
Aliases from SELECT items cannot be used in the GROUP BY clause. Use the original expression instead.
Example:
SELECT date_bin(1h, time) AS hour_time, device_id, avg(temperature)
  FROM table1
  WHERE time >= 2024-11-27 00:00:00  and time <= 2024-11-29 00:00:00
  GROUP BY date_bin(1h, time), device_id;Result:
+-----------------------------+---------+-----+
|                    hour_time|device_id|_col2|
+-----------------------------+---------+-----+
|2024-11-28T08:00:00.000+08:00|      100| 85.0|
|2024-11-28T09:00:00.000+08:00|      100| null|
|2024-11-28T10:00:00.000+08:00|      100| 85.0|
|2024-11-28T11:00:00.000+08:00|      100| 88.0|
|2024-11-27T16:00:00.000+08:00|      101| 85.0|
+-----------------------------+---------+-----+
Total line number = 5
It costs 0.092s2.5 Using Aggregate Functions with \*
Only the COUNT function can be used with * to calculate the total number of rows. Using * with other aggregate functions will result in an error.
Example:
SELECT count(*) FROM table1;Result:
+-----+
|_col0|
+-----+
|   18|
+-----+
Total line number = 1
It costs 0.047s3. Sample Data and Usage Examples
The Example Data pagepage provides SQL statements to construct table schemas and insert data. By downloading and executing these statements in the IoTDB CLI, you can import the data into IoTDB. This data can be used to test and run the example SQL queries included in this documentation, allowing you to reproduce the described results.
Example 1: Downsampling Time-Series Data
Downsample the temperature of device 101 over the specified time range, returning one average temperature per hour:
SELECT date_bin(1h, time) AS hour_time, AVG(temperature) AS avg_temperature
  FROM table1
  WHERE time >= 2024-11-27 00:00:00  and time <= 2024-11-30 00:00:00
  AND device_id='101'
  GROUP BY 1;Result:
+-----------------------------+---------------+
|                    hour_time|avg_temperature|
+-----------------------------+---------------+
|2024-11-29T10:00:00.000+08:00|           85.0|
|2024-11-27T16:00:00.000+08:00|           85.0|
+-----------------------------+---------------+
Total line number = 2
It costs 0.054sDownsample the temperature of all devices over the past day, returning one average temperature per hour for each device:
SELECT date_bin(1h, time) AS hour_time, device_id, AVG(temperature) AS avg_temperature
  FROM table1
  WHERE time >= 2024-11-27 00:00:00  and time <= 2024-11-30 00:00:00
  GROUP BY 1, device_id;Result:
+-----------------------------+---------+---------------+
|                    hour_time|device_id|avg_temperature|
+-----------------------------+---------+---------------+
|2024-11-29T11:00:00.000+08:00|      100|           null|
|2024-11-29T18:00:00.000+08:00|      100|           90.0|
|2024-11-28T08:00:00.000+08:00|      100|           85.0|
|2024-11-28T09:00:00.000+08:00|      100|           null|
|2024-11-28T10:00:00.000+08:00|      100|           85.0|
|2024-11-28T11:00:00.000+08:00|      100|           88.0|
|2024-11-29T10:00:00.000+08:00|      101|           85.0|
|2024-11-27T16:00:00.000+08:00|      101|           85.0|
+-----------------------------+---------+---------------+
Total line number = 8
It costs 0.081sFor more details on the date_bin function, refer to the Definition of Date Bin (Time Bucketing) feature documentation.
Example 2: Query the Latest Data Point for Each Device
SELECT device_id, LAST(temperature), LAST_BY(time, temperature)
  FROM table1
  GROUP BY device_id;Result:
+---------+-----+-----------------------------+
|device_id|_col1|                        _col2|
+---------+-----+-----------------------------+
|      100| 90.0|2024-11-29T18:30:00.000+08:00|
|      101| 90.0|2024-11-30T14:30:00.000+08:00|
+---------+-----+-----------------------------+
Total line number = 2
It costs 0.078sExample 3: Count Total Rows
Count the total number of rows for all devices:
SELECT COUNT(*) FROM table1;Result:
+-----+
|_col0|
+-----+
|   18|
+-----+
Total line number = 1
It costs 0.060sCount the total number of rows for each device:
SELECT device_id, COUNT(*) AS total_rows
  FROM table1
  GROUP BY device_id;Result:
+---------+----------+
|device_id|total_rows|
+---------+----------+
|      100|         8|
|      101|        10|
+---------+----------+
Total line number = 2
It costs 0.060sExample 4: Aggregate without a GROUP BY Clause
Query the maximum temperature across all devices:
SELECT MAX(temperature)
FROM table1;Result:
+-----+
|_col0|
+-----+
| 90.0|
+-----+
Total line number = 1
It costs 0.086sExample 5: Aggregate Results from a Subquery
Query the combinations of plants and devices where the average temperature exceeds 80.0 over a specified time range and has at least two records:
SELECT plant_id, device_id 
FROM (
    SELECT date_bin(10m, time) AS time, plant_id, device_id, AVG(temperature) AS temp FROM table1 WHERE time >= 2024-11-26 00:00:00 AND time <= 2024-11-29 00:00:00
    GROUP BY 1, plant_id, device_id
) 
WHERE temp > 80.0 
GROUP BY plant_id, device_id 
HAVING COUNT(*) > 1;Result:
+--------+---------+
|plant_id|device_id|
+--------+---------+
|    1001|      101|
|    3001|      100|
+--------+---------+
Total line number = 2
It costs 0.073s